Un mathématicien de RUDN University a construit un modèle pour la propagation du COVID-19 et il a montré comment la vaccination affecte le cours d’une pandémie

Un mathématicien de RUDN University a construit un modèle pour la propagation du COVID-19 et il a montré comment la vaccination affecte le cours d’une pandémie

Les mathématiciens de RUDN University ont modélisé la propagation de COVID-19 sur la base de deux modèles de régression mathématique. Les mathématiciens ont divisé les pays en trois groupes en fonction du taux d’infection et des conditions climatiques et ont trouvé une approximation mathématique appropriée pour chacun d’eux. Sur la base du modèle, les mathématiciens ont prédit les vagues suivantes. Le pronostic s’est avéré exact dans les pays où la vaccination de masse n’a pas été introduite.

Le taux de propagation de l’épidémie à l’intérieur du pays dépend, entre autres, des conditions climatiques du pays dont la temperature,humidité et vents. Par exemple, pendant la saison froide, l’air sec assèche la muqueuse nasale, la première barrière au virus et donc une personne s’infecte plus rapidement. Les températures élevées, en revanche, empêchent le virus de se multiplier. Sur la base de ces considérations, le professeur de RUDN University Maria Alessandra Ragusa, en collaboration avec des collègues d’Égypte et d’Italie, a construit des modèles de propagation du COVID-19 séparément pour trois groupes de pays aux conditions climatiques différentes. Il s’est avéré que le modèle prédit avec précision l’évolution de l’épidémie, mais seulement jusqu’à ce que l’effet de la vaccination commence à se faire sentir.

"Le principal problème dans l’étude des épidémies est de savoir comment prédire le comportement de la maladie, combien de personnes seront infectées à l’avenir, déterminer le pic de la pandémie, la durée de la deuxième vague de la maladie et le nombre total de décès après la fin de la pandémie. Nous avons utilisé des modèles de régression modernes pour modéliser de nouveaux cas de maladie dans différents pays et prédire les prochaines vagues de coronavirus", Maria Alessandra Ragusa, professeur à RUDN University.

Les mathématiciens ont identifié trois groupes de pays. La première catégorie comprend les pays dans lesquels la première vague de la pandémie a duré environ 180 jours. Ce sont les pays avec le taux de propagation le plus bas, la température annuelle moyenne est de 15-38 (par exemple, l’Arabie saoudite, l’Égypte). Dans le deuxième groupe de pays (par exemple, la Grande-Bretagne, l’Allemagne, l’Italie) avec une température annuelle moyenne de 2-31 ?, la première vague a duré 90 jours. Les pays de ce groupe se caractérisent par un taux moyen d’infection et des » périodes d’arrêt " lorsque le taux de propagation diminue. Le troisième groupe comprend les pays avec le taux d’infection le plus élevé et sans périodes d’arrêt, la température annuelle moyenne y est de 2-18 ? — par exemple, les États-Unis et la Russie.

Pour modéliser les mathématiques, ils ont utilisé les données de l’OMS sur le nombre de cas du 1er mars au 15 novembre 2020. Les mathématiciens de RUDN University ont choisi les modèles de régression les plus appropriés, c’est-à-dire les méthodes d’étude statistique de l’effet de plusieurs variables sur une valeur. La série de Fourier et la somme des sinus étaient les plus précises pour modéliser les cas de COVID-19. Cela signifie que la courbe des nouveaux cas de la maladie est présentée soit comme une somme de fonctions de Fourier (elles peuvent être représentées comme des fluctuations d’une certaine fréquence et d’une certaine amplitude), soit comme une somme de sinus ordinaires.

En conséquence, les mathématiciens ont obtenu les valeurs calculées du pic de la deuxième ou de la troisième vague dans les pays étudiés. Différents modèles ont donné à peu près les mêmes prévisions avec une différence de plusieurs jours. Les prédictions obtenues par les mathématiciens ont été comparées aux données disponibles à l’époque. Il s’est avéré que le modèle donne des prédictions assez précises si le pays n’a pas introduit la vaccination universelle. Par exemple, la valeur calculée du pic de nouveaux cas en Égypte est de 1 481 au 11 janvier 2021 ; en réalité, le pic s’est produit le 31 décembre dont 1418 cas. Dans le reste des pays, le modèle donne une prédiction précise jusqu’au début de 2021. Après cela, l’effet de la vaccination commence à affecter et les valeurs calculées diffèrent de la réalité. Par exemple, pour l’Allemagne, les valeurs prédites et réelles coïncident jusqu’au 15 janvier 2021 environ et déjà le 15 février, elles diffèrent d’environ 2,5 fois.

"À l’avenir, nous prévoyons de développer des modèles prédictifs, en tenant compte de la façon dont la vaccination affecte le taux de propagation du virus", Maria Alessandra Ragusa, professeur à RUDN University.

Les résultats sont publiés dans la revue Mathematics

Recherche
07 Sep
Les chimistes de l'Université RUDN ont développé une réaction domino pour obtenir des médicaments anticancéreux

Les chimistes de l’Université RUDN ont proposé une nouvelle réaction pour obtenir des substances organiques complexes dans un et unique récipient. Les produits de synthèse se sont révélés efficaces contre les cellules cancéreuses, y compris celles résistantes aux médicaments connus.

Recherche
19 Aug
Les biotechnologues de RUDN University ont développé un test rapide pour le diagnostic des brûlures bactériennes des cultures fruitières

Les biotechnologues deRUDN University ont créé une méthode qui détecte les infections bactériennes dans les pommes, les poires, les aubépines et d’autres plantes de la famille des Rosacées. Le test ne nécessite pas de matériel de laboratoire et donne un résultat en 10 minutes. Cela vous permettra de détecter rapidement la maladie et d’empêcher la propagation de l’infection.

Recherche
19 Aug
Un biologiste de RUDN University a évalué la résistance des bioplastiques aux environnements agressifs

Le biologiste de RUDN University a étudié comment les facteurs environnementaux agressifs: eau, solutions salines, ozone agissent sur les nanofibres ultrafines de biopolymères. Les résultats vous aideront à sélectionner le bon type de bioplastique en fonction du domaine d’utilisation par exemple, pour les implants médicaux, les emballages biodégradables ou les filtres pour le traitement de l’eau.