Un mathématicien de l'Université RUDN nommé meilleur réseau neuronal pour diagnostiquer les pathologies cérébrales
Imagerie est l’une des étapes clés du diagnostic des pathologies cérébrales. Il s’agit d’une visualisation de l’activité cérébrale et des tissus cérébraux à l’aide de la tomodensitométrie, des rayons X, de l’EEG et d’autres méthodes. L’interprétation des résultats de ces analyses est effectuée par des professionnels spécialement formés. Mais même un œil expérimenté ne peut pas toujours tirer la bonne conclusion. L’intelligence artificielle peut aider à l’interprétation. Puisque nous parlons d’un tandem médecin-ordinateur, et non de remplacer une personne par une intelligence artificielle, de tels modèles sont nécessaires qui non seulement donnent le résultat, mais peuvent «expliquer» pourquoi cela s’est passé de cette façon. Cette propriété est appelée interprétabilité. Un mathématicien de l’Université RUDN et ses collègues de l’Université fédérale de la Baltique ont sélectionné les meilleurs modèles adaptés à cette fin.
«L’intelligence artificielle dans l’analyse des données biologiques et médicales est une tâche importante et activement recherchée. Ceci s’applique également à l’analyse d’images médicales. L’un des points centraux ici est l’interprétabilité. Ceci est important pour la création de divers systèmes auxiliaires de prise de décision, lorsqu’un travailleur médical doit comprendre et interpréter la décision obtenue à l’aide de méthodes d’intelligence artificielle. Par conséquent, il est d’un grand intérêt de développer différentes approches de neuroimagerie qui soient interprétables. Notre objectif était de trouver un bon modèle mathématique pour classer les états cérébraux en mettant l’accent sur l’interprétabilité des résultats», a déclaré Alexander Khramov, docteur en sciences physiques et mathématiques, chercheur principal au département des transports de l’université RUDN.
Pour trouver les meilleurs modèles, les chercheurs ont utilisé des données EEG prélevées sur des patients alors qu’ils regardaient différentes images. Le premier est le tableau Mona Lisa , le second est l’ illusion d’optique Necker Cube, qui représente un simple cadre cubique. Le fait est que la figure n’indique pas quelles faces sont devant et lesquelles sont derrière. Une personne ne remarque généralement pas la contradiction et interprète l’image sans ambiguïté, mais pour un ordinateur, cette tâche n’est pas si simple. Par conséquent, le cube de Necker est utilisé pour tester des modèles informatiques du système perceptif humain. Au total, cinq personnes ont participé à l’expérience. Sur la base des résultats de l’EEG , le réseau de neurones devait déterminer la luminosité de l’image qu’une personne voit. De plus, à l’aide d’un algorithme spécial, le réseau de neurones identifie les paramètres spécifiques qui ont influencé la décision finale du modèle.
Les mathématiciens ont comparé plusieurs modèles de réseaux de neurones artificiels. Le modèle avec le soi-disant gradient adaptatif Adagrad s’est avéré être le meilleur. Il s’agit d’une méthode d’optimisation qui «accorde» le réseau de neurones en fonction de la fréquence à laquelle telle ou telle fonctionnalité se produit. Un réseau de neurones à gradient adaptatif a atteint une précision de 92,9 %.
«Adagrad s’est avéré être la meilleure méthode d’optimisation. Nos résultats aideront à sélectionner les méthodes d’apprentissage automatique appropriées pour la formation correcte des interfaces cerveau-ordinateur», a déclaré Alexander Khramov, docteur en sciences physiques et mathématiques, chercheur principal au département des transports de l’université RUDN.
Les résultats sont publiés dans Mathematics.
Un agrotechnicien de l'Université RUDN a identifié des génotypes de blé résistants à un pathogène fongique dangereux qui infecte les plantes avant même la fonte des neiges et réduit les rendements.
Les ingénieurs de RUDN ont calculé les paramètres d'un système qui peut empêcher les centrales électriques lunaires de surchauffer. Ces développements seront nécessaires lors de la planification de missions lunaires à long terme et de la colonisation du satellite.
La conférence «Vers un développement durable de la civilisation: coopération, science, éducation, technologie (la voie de l'Afrique vers les 17 objectifs de développement durable: une approche intégrée)»* s'est ouverte à la RUDN. Elle réunit des ministres de Sierra Leone et d'Éthiopie, ainsi que des scientifiques de renommée mondiale d'Algérie, du Brésil, d'Éthiopie, d'Allemagne, d'Inde, d'Indonésie, du Maroc, de Namibie, d'Afrique du Sud, de Zambie et d'autres pays.